Dynamic photonic structures: non-reciprocity, gauge potential, and synthetic dimensions.

Lecturer: 
Fan Shanhui, Stanford University
Lecturer description: 

 Shanhui Fan is a Professor of Electrical Engineering, a Professor of Applied Physics (by courtesy), a Senior Fellow of the Precourt Institute for Energy, and the Director of the Edward L. Ginzton Laboratory, at the Stanford University. He received his Ph. D in 1997 in theoretical condensed matter physics from the Massachusetts Institute of Technology (MIT). His research interests are in fundamental studies of solid state and photonic structures and devices, especially photonic crystals, plasmonics, and meta-materials, and applications of these structures in energy and information technology applications. He has published over 450 refereed journal articles that were cited over 60,000 times according to Google Scholar, has given over 330 plenary/keynote/invited talks, and was granted 62 US patents. Prof. Fan received a National Science Foundation Career Award (2002), a David and Lucile Packard Fellowship in Science and Engineering (2003), the National Academy of Sciences W. O. Baker Award for Initiative in Research (2007), the Adolph Lomb Medal from the Optical Society of America (2007), and a Vannevar Bush Faculty Fellowship (2017).  He is a Thomson Reuters Highly Cited Researcher in Physics since 2015,  a Fellow of the IEEE, the American Physical Society, the Optical Society of America,  and the SPIE.

Place: 
Room 111, Physics Building
date: 
Tue, 2018-11-13 16:00 - 17:00

We show that dynamic photonic structures, where refractive index of the structure is modulated as a function of time, offers a wide ranges of possibilities for ex

Show on index slide: 
0

SNO+

Lecturer: 
Mark Chen, Queens University
Lecturer description: 
Mark Chen is the Gordon and Patricia Gray Chair, Professor, in Particle Astrophysics at Queen's University.  He is the Director and Spokesperson for the SNO+ experiment.  Dr. Chen's PhD is from Caltech.  His postdoc was at Princeton University where he was also Assistant Professor, and where he worked on the Borexino solar neutrino experiment.  He returned to Canada in 2000 to join Queen's University and the SNO experiment.


 

Place: 
Room 111, Physics Building
date: 
Wed, 2018-11-14 15:30 - 16:30

SNO+ is the successor to the Sudbury Neutrino Observatory.  SNO+ will be filled with liquid scintillator in place of the heavy water that was in the orig

Show on index slide: 
0

拓扑声子晶体

Lecturer: 
刘正猷,武汉大学物理科学与技术学院
Lecturer description: 

刘正猷,国家杰出青年基金获得者,教育部长江学者特聘教授。1986年、1989年和1993年在武汉大学物理学系分别获学士、硕士及博士学位。19937—20014月在华南理工大学应用物理学系历任讲师、副教授、教授,20014月至今在武汉大学物理科学与技术学院任教授。曾在意大利国际理论物理中心(ICTP)、香港中文大学物理学系、香港科技大学物理学系、加拿大Manitoba大学物理与天文学系从事访问研究。在ScienceNatureNature PhysicsNature MaterialsPRLPR系列等期刊上发表论文200余篇,Google Scholars他人引用总数超过10000次、单篇论文他引最高超过2400次。研究成果曾入选PhysicsWeb年度物理学十大研究亮点(2000年)、Nature Physics的研究亮点、Physical Review Letters编辑推荐、被Nature以及Physics World专题报道等。曾获国家自然科学二等奖(2010年)等。

 

Place: 
物理楼111报告厅
date: 
Wed, 2018-11-14 14:00 - 15:00

拓扑物态是当前凝聚态及材料物理领域的重要关注焦点。声子晶体是具有周期性结构的人工材料,其中的声子态或声波态也可具有异于寻常的拓扑性质。本报告主要介绍两类拓扑声子晶体,即能谷声子晶体和外尔声子晶体,内容涉及能谷声子晶体中的能谷态的涡旋特性、拓扑相及拓扑相变、能谷边缘态及拓扑输运,以及外尔声子晶体中的Weyl点、费米弧表面态及拓扑负折射效应等等。

 

Show on index slide: 
0

Quantum information experiments using few electrons in semiconductor quantum dots

Lecturer: 
Dohun Kim, Seoul National University
Lecturer description: 

Prof. Dohun Kim has recieved his Ph.D at Univ. of Maryland, USA in the field of quantum transport of topological insulators. During his postdoctoral study, he and coworkers at Univ. of Wisconsin invented a new type of semiconductor qubit: quantum dot hybrid qubit. Since then he has been actively working in the field of quantum coherent nano device transport in condensed matter physics and quantum coherent control for quantum information science since. He recently joined the faculty of physics department at Seoul National University in South Korea and is working as assistant professor from 2016. Dr. Kim's research area lies at the intersection of semiconductor physics, quantum computation, and nanodevice-based engineered quantum systems.

 

Place: 
Room 111, Physics Building
date: 
Wed, 2018-11-07 15:00 - 16:00

The charge and spin degrees of freedom of a

Show on index slide: 
0

Per aspera ad astra: getting light through opaque medium

Lecturer: 
Vladislav V. Yakovlev, Texas A&M University
Lecturer description: 

Dr. Vladislav V. Yakovlev is a full professor in the Departments of Biomedical Engineering, Electrical and Computer Engineering and Physics & Astronomy at Texas A&M University. He got his PhD in 1990 from Moscow State University. After a short stay with Novatec Laser System, Inc., where he discovered what is now known as bladeless LASIK, he worked in the Department of Chemistry and Biochemistry at UCSD as a postdoctoral researcher and research scientist developing new tools for optical molecular spectroscopy, imaging and control. Dr. Yakovlev started as an assistant professor at the University of Wisconsin – Milwaukee in 1998 and moved to Texas A&M University in 2011. He has more than 150 research publications in leading scientific journals. His research was supported by NSF, NIH, ARO, AFOSR, ONR, and DARPA. Dr. Yakovlev is a Fellow of OSA, AIMBE, APS and SPIE. He is a member of Editorial Board of Journal of Biomedical Optics, Optica and Applied Sciences. His research interests are in a broad area of optical spectroscopy, microscopy, imaging and sensing.

 

Place: 
Room 111, Physics Building
date: 
Wed, 2018-10-24 15:00 - 16:00

Strong light scattering can make even an optically non-absorbing object opaque preventing deep light penetration. Many far-reaching applications, such as deep brain imaging could benefit from a better coupling of light into scattering medium and increased penetration depth resulting into greater transmission through a highly scattering medium. In this talk I will present a simple, but efficient way of increasing light coupling through optical interface engineering.

Show on index slide: 
0

New structure of carbon under ultrahigh pressure

Lecturer: 
刘冰冰,吉林大学
Lecturer description: 

Prof. Bingbing LIU received the B.S. and Ph.D. degrees in physics from Jilin University, China, in 1989 and 1995, respectively. She joined the faculty of the State Key Lab of Superhard Materials of Jilin University after graduation. She worked as a postdoctoral researcher at the Department of Physics, Umea University, Sweden, from 1999 to 2001. She became an associate professor (1998), full professor (2001) of Jilin University. She was  selected Changjiang professor in 2009, supported by the NSFC for Distinguished Young Scholars of China in 2010 . She is currently the director of State Key of Superhard Materials. Her research is devoted to high pressure induced novel structure and physical property of various materials, including carbon and metal oxide nano materials. She has published over 300 peer reviewed journal articles including Science, PRL, Adv. Mater.

Place: 
物理楼111报告厅
date: 
Wed, 2018-10-17 15:00 - 16:00

Design and synthesis of new carbon materials have been attracting intensive attention due to their application in various fields.

Show on index slide: 
0

超快激光微纳加工及其应用研究

Lecturer: 
吴东,中国科学技术大学
Lecturer description: 

吴东,2010年获得吉林大学博士学位,曾获得2009年吉林大学第二十四届“精英杯”学术成果大赛特等奖、2010年宝钢教育奖优秀学生金、第十一届有机非线性光学国际会议获得最佳壁报奖。2012年获得全国百篇优秀博士论文奖,2013年入选国家第五批青年千人计划。长期从事超快激光微纳加工技术及其应用研究,在Nature Photonics, Light:Sci & Appl. (2篇,Nature系列子刊,1篇入选ESI“高被引论文”),PNAS(美国科学院院刊),Adv.Mater.,ACS Nano.,Laser Photon.Rev., Lab Chip(6篇,微流芯片领域top期刊), APL(11篇),Opt.Lett./Opt.Express(15篇)等杂志发表相关论文70余篇,其中影响因子3.0以上62篇,9.0以上17篇。所发表的论文被杂志封面采用、专题评价、最高下载和转载累计50篇次,已被他引2000余次。

Place: 
物理楼111报告厅
date: 
Wed, 2018-10-10 15:00 - 16:00

微纳制备技术是实现微器件结构及系统集成的基础。针对光学工程、仿生加工、芯片实验室、智能机械等领域对微纳制备技术提出高要求,如三维可设计、纳米加工精度和适用多种材料等,以及激光直写加工效率低,我们系统研究了基于光场调制的高效率飞秒激光加工和多种新型复合型激光加工方法,提出了若干加工新原理和关键技术,并将其应用于微光学、微流控和仿生表面等,取得了一系列创新成果,相关研究受到千人计划、中科院仪器专项、科技部重点研发计划、国家自然科学基金等项目的支持。

Show on index slide: 
0

高能量密度物理

Lecturer: 
朱少平,北京应用物理与计算数学研究所
Lecturer description: 

1982年8月,毕业于浙江大学物理系;1996年3月,毕业于日本国立综合研究大学院大学核聚变科学专业,获得博士学位。现为北京应用物理与计算数学研究所研究员,从事激光聚变物理等研究,曾担任该所所长、国家高技术863计划惯性约束聚变技术主题专家组组长。现担任国家某重大科技专项副总设计师、核科学挑战专题高能量密度科学领域首席科学家、中国物理学会副理事长、《计算物理》杂志主编。

2004年入选新世纪百千万人才工程国家级人选并获政府特殊津贴,2014年入选中央组织部“万人计划”百千万工程领军人才。曾获国家科技进步奖2等奖3项、军队科技进步奖1等奖5项,在学术刊物发表论文90余篇。

Place: 
物理楼111报告厅
date: 
Wed, 2018-09-26 16:00 - 17:00

高能量密度定义为能量密度高于10焦耳/厘米3(压力大于106大气压)。高能量密度物理主要研究高能量密度条件下物质结构与特性及其发展规律。利用激光聚变等方式可在极小空间、极短时间内在实验室产生高能量密度状态,开展高能量密度物理实验研究。高能量密度物理研究的对象具有强非线性、强关联、相对论效应起重要作用等特点。这些特点决定了高能量密度物理研究极具挑战性和前沿性,蕴含着丰富的科学发现。

实现热核聚变点火和燃烧是激光聚变研究最重要的目的之一,实现聚变点火本质上是挑战能量密度。对于热核聚变点火和燃烧,两个物理量是关键:温度和密度。处于高温度状态的氘氚等离子体才能克服氘氚离子间的静电排斥势,发生聚变反应;处于高密度状态的氘氚等离子体才能将聚变产生的能量留在系统中,用于继续加热氘氚,维持聚变反应。目前的激光驱动能量条件下,要形成点火热斑,等离子体的温度需高于5keV,等离子体的密度100g/cm3左右,也就是等离子体的压力(能量密度)要达到360Gbar。

本报告将介绍高能量密度物理的基本内涵,激光聚变点火研究的现状和面临的问题并谈一点看法;再简要介绍中国工程物理研究院正在组织实施的核科学挑战专题高能量密度科学领域的有关情况。

Show on index slide: 
0

Quantum Simulation of Hawking-Unruh Radiation

Lecturer: 
Cheng Chin, James Franck institute, Enrico Fermi institute, Department of Physics, University of Chicago
Lecturer description: 

Prof. Chin earned his Ph.D in Physics from Stanford University under thesupervision of Steven Chu (Nobel laureate in Physics). He  is a professor at the University of Chicago, affiliated with the Department of Physics as well as the Enrico Fermi Institute and the James Franck Institute. Prof. Chin is a very active scientist. He has given many invited talks in international conferences and organized or co-organized many conferences. He has published numerous papers, and is a Thomson Reuters Highly Cited Researcher. Prof. Chin has received many awards for his scientific achievements, including the Overseas Chinese Physics Association's Outstanding Young Researcher Award (2006), the APS I.I. Rabi Prize (2011) and the Bose-Einstein condensation award (2017). He was elected as an American Physical Society Fellow in 2014.

Place: 
Room 111, Physics Building
date: 
Mon, 2018-09-17 15:30 - 16:30

Quantum phenomena in curved spacetime are intriguing research topics that aim to offer hints to the not-yet-known theory of quantum gravity.

Show on index slide: 
0

X射线原理及其应用

Lecturer: 
唐传祥,教授,清华大学
Lecturer description: 

唐传祥,1969年生,清华大学工程物理系教授。1992年清华大学物理系获理学学士及电子系工学学士(双学位),1996年清华大学工程物理系获工学博士。1996-今,清华大学工程物理系讲师、副教授、教授。1996-1998年,德国DESY访问学者。现任中国核学会辐射物理分会副理事长、粒子加速器分会副理事长,教育部高等学校核工程与核技术专业教学指导委员会秘书长,国际未来加速器委员会(ICFA)的先进新型加速器组(ANA)成员;2006-2012年曾任清华大学工程物理系主任。
主要从事粒子加速器物理及应用等方面的科学研究及教学。发表学术论文约200篇, 授权发明专利30余项,曾获国家科学技术进步一等奖、国家科学技术进步(创新团队)奖、中国专利金奖,以及省部级奖励3项及其它发明专利奖2项。2009年获得“国家杰出青年基金”,还曾获得 “北京市优秀教师”、“北京市教育创新标兵”、教育部“新世纪人才” 、“国务院政府特殊津贴”等。

Place: 
物理楼111报告厅
date: 
Wed, 2018-09-19 15:00 - 16:00

自伦琴在1895年发现X射线以来,X射线技术越来越广泛地应用于医疗、工业、安全检查、国防装备及科学研究之中。该报告将介绍X射线的基本特性及其产生方法,并介绍其在先进辐射成像等领域的应用。报告将讲授基于低能电子直线加速器的韧致辐射X射线及其应用、基于自由电子激光的相干X射线光源的原理及其技术等。

Show on index slide: 
0