Nanoscale superconductivity: Smaller is different and more

Antonio M. García-García Cavendish Laboratory, Cambridge University

http://www.tcm.phy.cam.ac.uk/~amg73/

Pedro Ribeiro Dresden

Santos & Way Santa Barbara

PRB, 86, 064526 (2012) PRL 108, 097004 (2012) PRB 84,104525 (2011) Editor's Suggestion PRB 83, 014510 (2011) Nature Materials 9, 550 (2010)

Sangita Bose Bombay

Klaus Kern Stuttgart

Altshuler Columbia

Yuzbashyan Rutgers

Richter & Urbina Regensburg

Single grains R << ξ

7 nm

0 nm

JJ Arrays R,I << ξ

What?

Nanowires R << ξ

Thin Films L_z << ξ

0 nm

Why?

Mesoscopic + SC

Beauty of quantum coherence

Nanocircuits

Where is the limit?

Enhancement of Tc?

Despite Mermin-Wegner theorem?

Enhancement?

How to enhance SC substantially?

with **control**

Mechanism of SC in cuprates?

\$10

Question

\$10⁶ Question

+Experimental Control

No Control

+Predictive power

Theory Drifts Trial and error

Thin Films? JJ array?

Metal	т _с (°К)	T_c/T_{c0}	d (Å)	pO
Al	3.0	2.6	40	0.19
Ga	7.2	6.5		0.20
Sn	4.1	1,1	110	0.31
In	3.7	1.1	110	0.36
Pb	7.2	1.0		0.53

Abeles, Cohen, Cullen, Phys. Rev. Lett., 17, 632 (1966)

Crow, Parks, Douglass, Jensen, Giaver, Zeller....

A.M. Goldman, Dynes, Tinkham...

Thin Films

Single grains

FIG. 1. $(T_c/T_{c\infty})$ versus (a/L) (see Ref. 17).

Shape Resonances

Blatt, Thompson Phys. Lett. 5, 6 (1963)

BCS superconductivity

Finite size effects

A.M. Goldman et al.

PRL 62 2180 (1989) PRB 47 5931 (1993)

Recent

Atomic scale control

Shih et al., Science 324, 1314 (2009) Xue et al., Science 306, 1915 (2004)

Xue et al., Nat Phys, 6 (2010),104.

Quantum size effects

PRB 74 132504 (2006)

Stress, substrate

Xue, Liu et al. arxiv:1208.6054

theory

Pb(111) films

Thickness N(ML)

24 25 26 27 28 29

experiment

22 23

0.88

0.86

0.80

0.78

20 21

T_cT_{c,bulk}

PRB 75 014519 (2007)

Islands

Pb/NaCl/Ag(111)

Schneider, et al., PRL 102, 207002 (2009) PRL 108, 126802 (2012)

Hasegawa, et al.

Phys. Rev. Lett. 101, 167001 (2008)

Nanowires R <<ξ

Tinkham et al. Nature 404, 971 (1990)

Superconductor Insulator transition

Thermal

Langer & Ambegaokar, PR. 164, 498 (1967). McCumber & Halperin PRB 1, 1054 (1970).

Instantons

Coulomb-Gas

BKT transition

Quantum

Zaikin, A. D., Golubev, et al, PRL 78, 1552 (1997).

Quantitative?

Carbon nanotubes

Fluctuations High Tc? Phase Slips Lehtinen, PRB 85 094508 (2012)

Is enhancement of superconductivity possible?

Cuprates high T_c Heterostructures

Higher T_c!! Intrinsic inhomogeneities

Iron Pnictides Heterostructures

Xue et al.: Arxiv: 12015694

Enhancement of T_c by disorder

Fractal distributions of dopants enhances SC in cuprates

Bianconi, et al., Nature 466, 841 (2010)

PRL 108, 017002 (2012)

LaAIO₃ /SrTiO₃ Heterostructures

Triscone, Nature 456 624 (2008) Lesueur, arXiv:1112.2633 PRL 104, 126803 (2010) PRB 85 020457 (2012)

Control & Tunability

Spin-Orbit Disorder Magnetism E Field effect

Relevance Localization Exotic Quantum Matter Topology

Theoretical response

T = 0Ultrasmall grains $\delta / \Delta_0 > 1$

von Delft, Braun, Larkin, Sierra, Dukelsky, Yuzbashyan, Matveev, Smith, Ambegaokar

Exact diagonalization, RPA, Path Integral, Montecarlo.....

Richardson It's exact. I did it 20 years ago BCS fine until $\delta / \Delta_0 \sim 1/2$

BCS sharp transition

Richardson no transition

J. von Delft et al., Phys. Rep., 345, 61 (2001)

$\Delta >> \delta$

Heiselberg (2002): harmonic potentials, cold atom	Devreese (2006): Richardson equations in a box
Kresin, Boyaci, Ovchinnikov	Olofsson (2008): Estimation (

(2007) : Spherical grain, high T_c

08): Estimation of fluctuations in BCS

Peeters, Shanenko, Croitoru, (2005-): BCS, BdG in a wire, cylinder...

Enhancement of SC is possible!

BCSFinite sizesuperconductivityeffects

Chaotic grains?

Is it done already?

Go ahead!

This has not been done before

Analytical? 1/k_F L <<1

Semiclassical techniques

Quantum observables in terms of classical quantities Berry, Gutzwiller, Balian, Bloch

 $\nu(\varepsilon) \Leftrightarrow L_p$

$\Delta >> \delta L \sim 10$ nm

BCS fine but..

$$H = \sum_{n\sigma} \epsilon_n c_{n\sigma}^{\dagger} c_{n\sigma} - \sum_{n.n'} I_{n,n'} c_{n\uparrow}^{\dagger} c_{n\downarrow}^{\dagger} c_{n'\downarrow} c_{n'\uparrow}$$
$$I(\epsilon_n, \epsilon_{n'}) = \lambda V \delta \int \psi_n^2(\vec{r}) \psi_{n'}^2(\vec{r}) d\vec{r}$$
$$\Delta(\epsilon) = \frac{1}{2} \int_{-\epsilon_D}^{\epsilon_D} \frac{\Delta(\epsilon') I(\epsilon, \epsilon')}{\sqrt{\epsilon'^2 + \Delta^2(\epsilon')}} \nu(\epsilon') d\epsilon'$$

Expansion in $1/k_FL$, δ/Δ_0

3d chaotic

Al grain $k_{F} = 17.5 \text{ nm}^{-1}$ $\Delta_{0} = 0.24 \text{mV}$

For L< 9nm leading correction comes from I

> PRL 100, 187001 (2008) PRB 83, 014510 (2011)

L = 6nm, Dirichlet, δ/Δ_0 =0.67

L= 6nm, Neumann, $\delta/\Delta_{0,}=0.67$

L = 8nm, Dirichlet, δ/Δ_0 =0.32

L = 10nm, Dirichlet, δ/Δ_0 ,= 0.08

Fluctuations No fluctuations Symmetries ξ > L ξ < L $\Delta(L)/\Delta_0$ 0.5 10 15 20L[nm] $\nu(\varepsilon) = \sum_{i} c_i \delta(\varepsilon - \varepsilon_i)$ $I(\epsilon_n, \epsilon_{n'}) = \lambda V \delta \int \psi_n^2(\vec{r}) \psi_{n'}^2(\vec{r}) d\vec{r}$ Long range order?

Single, Isolated Sn and Pb grains

Kern

Bose

а

nature materials

Observation of shell effects in superconducting nanoparticles of Sn

Sangita Bose^{1*}, Antonio M. García-García^{2*}, Miguel M. Ugeda^{1,3}, Juan D. Urbina⁴, Christian H. Michaelis¹, Ivan Brihuega^{1,3*} and Klaus Kern^{1,5}

7 nm

0 nm

More fun?

Why not

Ribeiro, Dresden

Beyond mean field

Quantum Fluctuations

Random Phase Approx Richardson Eqs

Thermal fluctuations

Path Integral Static Path Approx Muhlschlegel, Scalapino (1972)

Disorder, Coulomb....

Larkin, Gorkov

Fluctuations

 $T < T_c$ finite resistivity Stronger e-e interaction

$$\begin{array}{c} \textbf{T=0}\\ \textbf{deviations from}\\ \textbf{mean field} \end{array} \qquad \begin{array}{c} \textbf{Richardson's}\\ \textbf{equations} \end{array} \qquad \begin{array}{c} \textbf{Von Delft, Braun,}\\ \textbf{Dukelsky, Marsiglio,}\\ \textbf{Sierra, Smith,}\\ \textbf{Ambegaokar} \end{array}$$

$$-\frac{1}{\lambda d} + \sum_{j=1}^{m}' \frac{1}{E_i - E_j} = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{E_i - \epsilon_k} \qquad i = 1, \ldots, m$$

$$\begin{array}{c} \textbf{Ground}\\ \textbf{state}\\ \textbf{energy} \end{array}$$

$$E = 2 \sum_{i=1}^{m} E_i + \sum_{B} \epsilon_B$$

$$E = 2 \sum_{i=1}^{m} E_i + \sum_{B} \epsilon_B$$

$$\begin{array}{c} \textbf{D} = \textbf{E}_{\mathsf{D}}\\ \textbf{d} = \delta \end{array}$$

Richardson ~ 1968, Yuzbashyan, Altshuler ~ 2005

Thermal fluctuations

Path integral

Quantum + Thermal?

Richardson solution

Coulomb?

Dynamical phonons?

BCS OK δ/ Δ₀ ~ 1/2

δ/ Δ₀ << 1 Any T

SPA+RPA?

Divergences at intermediate T

Rossignoli and Canosa Ann. of Phys. 275, 1, (1999)

RPA+SPA ,Ribeiro and AGG, **Phys. Rev. Lett. 108, 097004 (2012)**

Where's the problem?

Of course the (zero modes) coordinates!!!

 $\Delta(\tau) = s(\tau) e^{i\phi(\tau)} \begin{array}{l} \mbox{Castellani, et al. PRL 78,} \\ \mbox{1612 (1997)} \end{array}$

$$s^{2}(\tau) = s_{0}^{2} + \delta s^{2}(\tau)$$

$$\phi(\tau) = \phi_0 + 2\pi M \tau / \beta + \delta \phi(\tau)$$

$$\mathcal{A}\left[s,\phi,M\right] = \mathcal{A}_0\left(s_0\right)$$

$$s_m^2 = \frac{1}{\beta} \int d\tau \, e^{i\Omega_m \tau} \delta s^2 \left(\tau\right)$$
$$\phi_m = \frac{1}{\beta} \int d\tau \, e^{i\Omega_m \tau} \delta \phi \left(\tau\right)$$
$$\tilde{s}_m^2 = \left[\beta \sum \frac{1}{2\xi_{\rm out}} \tanh\left(\frac{\xi_{0k}}{2}\right)\right] s_m^2$$

$$-i\pi \sum_{k} \left(1 - \frac{\varepsilon_{k}}{\xi_{0k}}\right) \frac{1}{\beta} M + \left(\sum_{k} \frac{s_{0}^{2}}{2\xi_{0k}^{3}}\right) \frac{1}{\beta^{2}} (\pi M)^{2}$$
$$+ \frac{1}{2} \sum_{m \neq 0} \left(\begin{array}{c} \tilde{s}_{-m}^{2} \\ \phi_{-m} \end{array}\right) \cdot \Xi (s_{0})_{m} \cdot \left(\begin{array}{c} \tilde{s}_{m}^{2} \\ \phi_{m} \end{array}\right)$$

$$Z/Z_0 = \int_0^\infty ds_0^2 \ e^{-\beta[\mathcal{A}_0(s_0) + \mathcal{A}_1(s_0)]}$$

$$\mathcal{A}_{1}\left[s_{0}\right] = \frac{1}{2} \int d\nu \left[n_{b}\left(\nu\right) - \frac{1}{\beta\nu}\right] \frac{1}{2\pi i} \left\{\ln\left[\widetilde{C}\left(\nu+i0^{+}\right)\right] - \ln\left[\widetilde{C}\left(\nu-i0^{+}\right)\right]\right\}$$
$$\widetilde{C}\left(z\right) = \left(-z^{2} + 4s_{0}^{2}\right)\left(-z^{2}\right) \left[\int_{D} d\varepsilon \,\varrho\left(\varepsilon\right) \frac{r\left(\xi\right)}{-z^{2} + \left(2\xi\right)^{2}}\right]^{2} + \left(-z^{2}\right) \left[\int_{D} d\varepsilon \,\varrho\left(\varepsilon\right) \frac{2\varepsilon r\left(\xi\right)}{-z^{2} + \left(2\xi\right)^{2}}\right]^{2}$$
$$r\left(\xi\right) = \frac{1}{2\xi} \tanh\left(\frac{\beta\xi}{2}\right)$$

Charging effects? The same

Charging

fluctuations

Non perturbative

 $\phi(\tau) = \phi_0 + 2\pi M \tau / \beta + \delta \phi(\tau)$

Odd-Even at T=0

Josephson junctions

Mason, Goldbart et al, Nature Physics 8 59 (2012)

Finite Size + Strong interactions ? Tough for even conventional superconductors

Benson Way

Holographic superconductivity in confined geometries?

Jorge Santos

Holographic principle

Maldacena's conjecture

AdS/CFT correspondence

t'Hooft, Susskind, Weinberg, Witten....

Extra dimension? Geometrization of Wilson RG

Holography beyond string theory

Easy to compute in the gravity dual

Detailed dictionary

An answer looking for a question

I do not know

Complex scalar

I know that

Spontaneous breaking U(1) at low T

Finite µ

Simplest dual gravity theory

$$S = \int d^4x \,\sqrt{-g} \left[R + \frac{6}{L^2} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - |D\psi|^2 - m^2 |\psi|^2 \right]$$

$$D = \nabla - iqA$$
 $\psi \equiv \text{complex scalar}$

Metric

$$\begin{split} ds^2 &= -f(r)dt^2 + \frac{dr^2}{f(r)} + r^2(dx^2 + dy^2) \\ &= -f(r)dt^2 + \frac{dr^2}{f(r)} + r^2(dR^2 + R^2d\theta^2) \\ &\quad f(r) = \frac{r^2}{L^2} \left(1 - \frac{r_0^3}{r^3}\right) \,, \end{split}$$

Equations of motion:

$$\partial_{r}^{2}|\psi| + \frac{1}{r^{2}f}\partial_{x}^{2}|\psi| + \left(\frac{f'}{f} + \frac{2}{r}\right)\partial_{r}|\psi| + \frac{1}{f}\left(\frac{A_{t}^{2}}{f} - m^{2}\right)|\psi| = 0$$

$$\partial_{r}^{2}A_{t} + \frac{1}{r^{2}f}\partial_{x}^{2}A_{t} + \frac{2}{r}\partial_{r}A_{t} - \frac{2|\psi|^{2}}{f}A_{t} = 0$$

Boundary
conditions:
$$\mathbf{r} = \mathbf{r_0} \quad \mathbf{r} \to \infty \quad |\psi| = \frac{\psi^{(1)}}{r} + \frac{\psi^{(2)}}{r^2} + O\left(\frac{1}{r^3}\right)$$
$$\mathbf{A_t} = \mathbf{0} \qquad A_t = \mu - \frac{\rho}{r} + O\left(\frac{1}{r^2}\right)$$

How
small?
$$\mu(x) = \mu_0 \left[\frac{1 - \epsilon + \epsilon \cosh\left(\frac{2x}{\sigma}\right) + \cosh\left(\frac{\ell_x}{\sigma}\right)}{\cosh\left(\frac{2x}{\sigma}\right) + \cosh\left(\frac{\ell_x}{\sigma}\right)} \right]$$

 $\langle \mathcal{O} \rangle = \sqrt{2} \psi^{(2)}$

Dictionary:

"Superconductivity" only for $I < I_c$

Mean field behavior

Fluctuations?

No thermal fluctuations

Large N artefact

Interactions depends on system size!

PRB, 86, 064526 (2012)

Theory Heterostructures Collections of grains

Topology Non-equilibrium

Experiments

Control on high T_c heterostructures

Control on grains arrangements

Substantial enhancement of T_c

CONTROL

PREDICTIVE POWER

Enhancement = \$10⁶

