教师名录
吴栋 副教授
  • 激光等离子体研究所
  • 惯性约束可控聚变,高能量密度物理
  • 理科楼2号楼521室
  • dwu.phys@sjtu.edu.cn

教育经历

2010/9–2015/7,博士,北京大学,等离子体物理

2013/7–2014/7,博士生联培,美国加州大学圣地亚哥分校

2006/9–2010/7,学士,山东师范大学,物理学

 

工作经历

2021年9月至今,长聘教轨副教授,上海交通大学,物理与天文学院,激光等离子体研究所

2019/5–2021/8,特聘副研究员,浙江大学物理学系,聚变理论与模拟中心

2018/9–2019/4,副研究员,中国科学院上海光学精密机械研究所

2016/3–2017/3,博士后访问学者,赫姆霍兹研究所,德国耶拿

2015/8–2018/8,助理研究员,中国科学院上海光学精密机械研究所

 

研究简介:

吴栋博士开发了独立自主的高能量密度等离子体动理学研究工具LAPINS,并在强激光或强流带电粒子与稠密等离子体相互作用的动理学研究,以及大尺度宏观量子简并等离子体的动理学研究方面取得创新和突破,形成了研究特色。在加盟交通大学前的近五年以来,吴栋博士在等离子体物理国际主流学术刊物发表论文30余篇,其中第一作者或通讯作者论文19篇(含1篇Nature Communication,1篇Nuclear Fusion,8篇Phys. Rev. E(含Rapid Communication 2篇), 2篇Matter and Radiation at Extreme,2篇Phys. Plasmas(含编辑推荐1篇),3篇Plasma Phys. Controlled Fusion,1篇Journal of Plasma Physics,1篇AIP Advance);获批多个科研项目,获批总经费近500万。


2021

  1. "Kinetic study of quantum two-stream instability by Wigner approach" Jiong-Hang Liang, Tian-Xing Hu, Dong Wu*, and Zheng-Mao Sheng* Phys. Rev. E 103, 033207 (2021).

  2. "A pairwise nuclear fusion algorithm for particle-in-cell simulations: weighted particles at relativistic energies" Dong Wu*, Z. M. Sheng, W. Yu, S. Fritzsche and X. T. He AIP Advances 11, 075003 (2021).


2020

  1. "Neutron generator based on intense lithium beam driver" Shunsuke Ikeda, Masahiro Okamura, Takeshi Kanesue, Deepak Raparia, Ady Hershcovitch, Kin Yip, Kazumasa Takahashi, Dong Wu, Antonino Cannavo, and Giovanni Ceccio,  Review of Scientific Instruments 91, 023304 (2020).

  2. "Dense tunable attosecond electron bunch from laser interaction with magnetized plasma",  Shixia Luan, Dong Wu, Ming Yu, Su-Ming Weng, Jingwei Wang, Wei Yu,  Plasma Phys. Control. Fusion 62, 055008  (2020).

  3. "Transport of intense particle beams in large scale plasmas",  B. Z. Chen, Dong Wu*, J. R. Ren, D. H. H. Hoffmann, and Y. T. Zhao* Phys. Rev. E 101, 051203(R) (2020).

  4. "Uniform warm dense matter formed by direct laser heating in the presence of external magnetic fields", Dong Wu*, W. Yu, Z. M. Sheng, S. Fritzsche, and X. T. He,  Phys. Rev. E 101, 051202(R) (2020).

  5. "Particle-in-cell simulation method for macroscopic degenerate plasmas", Dong Wu*, W. Yu, S. Fritzsche, and X. T. He, Phys. Rev. E 102, 033312 (2020).

  6. "Proton beams from intense laser-solid interaction: effects of the target materials",  Y. X. Geng, Dong Wu*, W. Yu, Z. M. Sheng, S. Fritzsche, Q. Liao, M. J. Wu, X. H. Xu, D. Y. Li, W. J. Ma, H. Y. Lu, Y. Y. Zhao, X. T. He, J. E. Chen, C. Lin*, and X. Q. Yan* Matter and Radiation at Extremes 5, 064402 (2020).

  7. "Double-cone ignition scheme for inertial confinement fusion",  Jie Zhang*, Wei-Min Wang, Xiao-Hu Yang, Dong Wu, Yan-Yun Ma,  Jin-Long Jiao, Zhe Zhang, Fu-Yuan Wu, Xiao-Hui Yuan, Yu-Tong Li and Jian-Qiang Zhu, Phil. Trans. R. Soc. A 13, 378 (2020).

  8. "Observation of a high degree of stopping for laser-accelerated intense proton beams in dense ionized matter", Jieru Ren, Zhigang Deng, Wei Qi, Benzheng Chen, Bubo Ma, Xing Wang, Shuai Yin, Jianhua Feng, Wei Liu, Zhongfeng Xu, Dieter Hoffmann, Shaoyi Wang, Quanping Fan, Bo Cui, Shu-Kai He, Zhurong Cao, Zongqing Zhao, Leifeng Cao, Yuqiu Gu, Shaoping Zhu, Rui Cheng, Xianming Zhou, Guoqing Xiao, Hongwei Zhao, Yihang Zhang, Zhe Zhang, Yutong Li, Dong Wu*, Weimin Zhou* and Yongtao Zhao*,  Nature Communications 11, 5157 (2020).

  9. "High-energy-density physics based on HIAF", Yongtao Zhao, Zimin Zhang, Rui Cheng, Dieter Hoffmann, Bubo Ma, Younian Wang, Yuyu Wang, Xing Wang, Zhigang Deng, Jieru Ren, Wei Liu, Wei Qi, Xin Qi, Youwu Su, Yingchao Du, Fuli Li, Jinyu Li, Jie Yang, Jiancheng Yang, Lei Yang, Guoqing Xiao, Dong Wu, Bin He, Yuanhong Song, Xiao-an Zhang, Shizheng Zhang, Lin Zhang, Ya Zhang, Yanning Zhang, Benzheng Chen, Yanhong Chen, Zheng Zhou, Xianming Zhou, Weimin Zhou, Hongwei Zhao, Quantang Zhao, Zongqing Zhao, Xiaoying Zhao, Zhanghu Hu, Feng Wan, Jianxing Li, Zhongfeng Xu, Fei Gao, Chuanxiang Tang, Wenhui Huang, Shuchun Cao, Leifeng Cao, Lina Sheng, Wei Kang, Yu Lei, Wenlong Zhan*, Scientia Sinica: Physica, Mechanica & Astronomica 50, 112004 (2020).                  

 

2019

  1. "Formation of relativistic electromagnetic solitons in over-dense plasmas",  Dong Wu*, W. Yu, S. Fritzsche, C. Y. Zheng and X. T. He, Phys. Plasmas 26, 063107 (2019). [Editor's Pick]

  2. "A high-order implicit particle-in-cell method for plasma simulations at solid densities",  Dong Wu*, W. Yu, S. Fritzsche, and X. T. He, Phys. Rev. E 100, 013207 (2019).

  3. "Particle-in-cell simulation of transport and energy deposition of intense proton beams in solid-state materials",  Dong Wu*, W. Yu, Y. T. Zhao*, D. H. H. Hoffmann, S. Fritzsche, and X. T. He, Phys. Rev. E 100, 013208 (2019).

  4. "Effects of resistive magnetic instability and electron refluxing on fast electron dynamics and bremsstrahlung radiation characteristics in relativistic laser-solid interaction",  Jieru Ren, Dong Wu*, Dieter H. H. Hoffmann, Dahui Wang, Yongtao Zhao*, Plasma Phys. Control. Fusion 61, 095016  (2019) .

  5. "Warm-Dense-Matter State of Iron Generated by Intense Heavy-Ion Beams",  Lin Zhang, Yongtao Zhao*, Jieru Ren, Jianxing Li, Wei Liu, Dong Wu, Rui Cheng, Guoqing Xiao, Dieter H. H. Hoffmann, and Zhongfeng Xu,  IEEE Transactions on Plasma Science 47, 853 (2019).

  6. "Influence of ionization on the formation of plasma channel and transport of relativistic electron beam in hydrocarbon gas",  Jianmin Tian, Hongbo Cai*, Dong Wu, Wenshuai Zhang, Enhao Zhang, Bao Du, and Shaoping Zhu*,  Plasma Phys. Control. Fusion 61, 125002  (2019) .


2018

  1. "Characteristics of x/γ-ray radiations by intense laser interactions with high-Z solids: the role of bremsstrahlung and radiation reactions",  Dong Wu*, W. Yu, Y. T. Zhao*, S. Fritzsche and X. T. He, Matter and Radiation at Extremes 3, 393 (2018).

  2. "Particle-in-cell simulations of laser-plasma interactions at solid densities and relativistic intensities: the role of atomic processes",  Dong Wu*, W. Yu, X. T. He and S. Fritzsche,  High Power Laser Science and Engineering 6, e50 (2018).  The simulation technique/model for bremsstrahlung radiation proposed in this paper was adopted by EPOCH code (version 2019) developed by University of Warwick, UK. This code is one of the most  popular open source particle in cell (PIC) codes used in the world.

  3. "Periodic spectral modulations of low-energy, low-charge-state carbon ions accelerated in an intense laser-solid interaction", Muhammad Noaman-ul-Haq*, Dong Wu, Hamad Ahmed, Boyuan Li, Xiaohui Yuan, Tongpu Yu, Xulei Ge, Thomas Sokollik, Liming Chen*, Zhengming Sheng, and Jie Zhang, Phys. Plasmas 25, 043122 (2018).

  4. "The generation of collimated γ-ray pulse from the interaction between 10 PW laser and a narrow tube target",  J. Q. Yu, R. H. Hu, Z. Gong, A. Ting, Z. Najmudin, Dong Wu, H. Y. Lu*, W. J. Ma*, and X. Q. Yan*,  Appl. Phys. Lett. 112, 204103 (2018).

  5. "Two dimensional hydrodynamic simulations of metal targets under irradiation of intense proton beams: Effects of target materials",  Lin Zhang, Yongtao Zhao*, Jieru Ren, Dong Wu, Wei Liu, Guansong Feng, Wencai Ma, Rui Cheng, Guoqing Xiao, Dieter H. H. Hoffmann, and Zhongfeng Xu, Phys. Plasmas 25, 113108 (2018).


2017

  1. "Identifying the source of super-high energetic electrons in the presence of pre-plasma in laser matter interaction at relativistic intensities", Dong Wu*, S. I. Krasheninnikov*, S. X. Luan, and W. Yu,  Nucl. Fusion 57, 016007 (2017). This article is one of the most cited articles published across the entire IOP Publishing journal portfolio in the past three years (2017 to 2019) and is awarded an IOP Publishing Top Cited Paper Award (China).

  2. "The controllable electron-heating by external magnetic fields at relativistic laser-solid interactions in the presence of large scale pre-plasmas",  Dong Wu*, S. X. Luan, J. W. Wang, W. Yu*, J. X. Gong, L. H. Cao*, C. Y. Zheng, and X. T. He,  Plasma Phys. Control. Fusion 59, 065004 (2017).

  3. "Monte Carlo approach to calculate proton stopping in warm dense matter within particle-in-cell simulations",  Dong Wu*, X. T. He, W. Yu, and S. Fritzsche*,  Phys. Rev. E 95, 023207 (2017).

  4. "Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations",  Dong Wu*, X. T. He, W. Yu, and S. Fritzsche*, Phys. Rev. E 95, 023208 (2017).

  5. "Magetostatic amplifier with tunable maximum by twisted-light plasma interactions",  Dong Wu*, and J. W. Wang*, Plasma Phys. Control. Fusion 59, 095010 (2017).

  6. "Enhancing the electron acceleration by a circularly polarized laser interaction with a cone-target with an external longitudinal magnetic field",  J. X. Gong, L. H. Cao*, K. Q. Pan, C. Z. Xiao, Dong Wu, and X. T. He*, Phys. Plasmas 24, 033103 (2017).

  7. "Enhancement of proton acceleration by a right-handed circularly polarized laser interaction with a cone target exposed to a longitudinal magnetic field",  J. X. Gong, L. H. Cao*, K. Q. Pan, K. D. Xiao, Dong Wu, C. Y. Zheng, Z. J. Liu, and X. T. He*, Phys. Plasmas 24, 053109 (2017).


2016

  1. "The sources of super-high energetic electron at relativistic circularly-polarized laser-solid interactions in the presence of large scale pre-plasmas",  Dong Wu*, S. I. Krasheninnikov*, S. X. Luan, and W. Yu, Phys. Plasmas 23, 123116 (2016).

  2. "Control of transmission of right circularly polarized laser light in overdense plasma by applied magnetic field pulses", Guangjin Ma, Wei Yu, M. Y. Yu*, Shixia Luan, and Dong Wu,  Phys. Rev. E 93, 053209 (2016).

  3. "Laser propagation in dense magnetized plasma",  S. X. Luan, W. Yu, F. Y. Li, Dong Wu, Z. M. Sheng, M. Y. Yu, and J. Zhang,  Phys. Rev. E 94, 053207 (2016).

 

2015

  1. "The radiation reaction effects in the ultra-intense and ultra-short laser foil interaction regime", Dong Wu, B. Qiao*, and X. T. He,  Phys. Plasmas 22, 093108 (2015).

  2. "Study of strong enhancement of synchrotron radiation via surface plasma waves excitation by particle-in-cell simulations",  K. Q. Pan, C. Y. Zheng*, Dong Wu, L. H. Cao, Z. J. Liu, and X. T. He*,  Appl. Phys. Lett. 107, 183902 (2015).

  3. "Nonlinear evolution of stimulated Raman scattering near the quarter-critical density",  C. Z. Xiao, Z. J. Liu, Dong Wu, C. Y. Zheng*, and X. T. He,  Phys. Plasmas 22, 053121 (2015).

  4. "Quasimonoenergetic electron beam and brilliant gamma-ray radiation generated from near critical density plasma due to relativistic resonant phase locking",  B. Liu, R. H. Hu, H. Y. Wang, Dong Wu, J. Liu, C. E. Chen, J. Meyer-ter-Vehn, X. Q. Yan*, and X. T. He*, Phys. Plasmas 22, 080704 (2015).

  5. "Tunable hard x-ray source from obliquely incident intense laser interacting with overdense solid targets",  K. Q. Pan, C. Y. Zheng*, Dong Wu, and X. T. He*,Phys. Plasmas 22, 083301 (2015).


2014

  1. "Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses",  Dong Wu, C. Y. Zheng*, B. Qiao, C. T. Zhou, X. Q. Yan, M. Y. Yu and X. T. He*,  Phys. Rev. E 90, 023101 (2014).

  2. "Generation of high-energy mono-energetic heavy ion beams by ultra-intense laser pulses",  Dong Wu, B. Qiao*, X. T. He, C. McGuffey and F. N. Beg,  Phys. Plasmas 21, 123118 (2014).


2013

  1. "Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime", Dong Wu, C. Y. Zheng, C. T. Zhou, X. Q. Yan, M. Y. Yu and X. T. He*,  Phys. Plasmas 20, 023102 (2013).

  2. "Breather-like penetration of ultrashort linearly polarized laser into over-dense plasmas",  Dong Wu, C. Y. Zheng, X. Q. Yan, M. Y. Yu and X. T. He*,  Phys. Plasmas 20, 033101 (2013).

  3. "Dynamics of ultra-intense circularly polarized solitons under inhomogeneous plasmas",  Dong Wu, C. Y. Zheng and X. T. He*, Phys. Plasmas 20, 063106 (2013).


地址:上海市东川路800号理科实验楼群
邮编:200240

沪交ICP备05010
© 上海交通大学物理与天文学院 版权所有

微信公众号